Skip to main content

Test Cases

Quick Summary

A test case is a blueprint provided by deepeval to unit test LLM outputs based on five parameters:

  • input
  • actual_output
  • [Optional] expected_output
  • [Optional] context
  • [Optional] retrieval_context

Here's an example implementation of a test case:

from deepeval.test_case import LLMTestCase

test_case = LLMTestCase(
input="What if these shoes don't fit?",
expected_output="You're eligible for a 30 day refund at no extra cost.",
actual_output="We offer a 30-day full refund at no extra cost.",
context=["All customers are eligible for a 30 day full refund at no extra cost."],
retrieval_context=["Only shoes can be refunded."],
)
info

Since deepeval is an LLM evaluation framework, the input and actual_output are always mandatory. However, this does not mean they are necessarily used for evaluation.

Additionally, depending on the specific metric you're evaluating your test cases on, you may or may not require a retrieval_context, expected_output and/or context as additional parameters. For example, you won't need expected_output and context if you're just measuring answer relevancy, but if you're evaluating hallucination you'll have to provide context in order for deepeval to know what the ground truth is.

Input

The input mimics a user interacting with your LLM application. The input is the direct input to your prompt template, and so SHOULD NOT CONTAIN your prompt template.

from deepeval.test_case import LLMTestCase

test_case = LLMTestCase(
input="Why did the chicken cross the road?",
# Replace this with your actual LLM application
actual_output="Quite frankly, I don't want to know..."
)
tip

You should NOT include prompt templates as part of a test case because hyperparameters such as prompt templates are independent variables that you try to optimize for based on the metric scores you get from evaluation.

If you're logged into Confident AI, you can associate hyperparameters such as prompt templates with each test run to easily figure out which prompt template gives the best actual_outputs for a given input:

deepeval login
test_file.py
import deepeval
from deepeval import assert_test
from deepeval.test_case import LLMTestCase
from deepeval.metrics import AnswerRelevancyMetric

def test_llm():
test_case = LLMTestCase(input="...", actual_output="...")
answer_relevancy_metric = AnswerRelevancyMetric()
assert_test(test_case, [answer_relevancy_metric])

# You should aim to make these values dynamic
@deepeval.log_hyperparameters(model="gpt-4o", prompt_template="...")
def hyperparameters():
# You can also return an empty dict {} if there's no additional parameters to log
return {
"temperature": 1,
"chunk size": 500
}
deepeval test run test_file.py

Actual Output

The actual_output is simply what your LLM application returns for a given input. This is what your users are going to interact with. Typcailly, you would import your LLM application (or parts of it) into your test file, and invoke it at runtime to get the actual output.

# A hypothetical LLM application example
import chatbot

input = "Why did the chicken cross the road?"

test_case = LLMTestCase(
input=input,
actual_output=chatbot.run(input)
)
note

You may also choose to evaluate with precomputed actual_outputs, instead of generating actual_outputs at evaluation time.

Expected Output

The expected_output is literally what you would want the ideal output to be. Note that this parameter is optional depending on the metric you want to evaluate.

The expected output doesn't have to exactly match the actual output in order for your test case to pass since deepeval uses a variety of methods to evaluate non-deterministic LLM outputs. We'll go into more details in the metrics section.

# A hypothetical LLM application example
import chatbot

input = "Why did the chicken cross the road?"

test_case = LLMTestCase(
input=input,
actual_output=chatbot.run(input),
expected_output="To get to the other side!"
)

Context

The context is an optional parameter that represents additional data received by your LLM application as supplementary sources of golden truth. You can view it as the ideal segment of your knowledge base relevant to a specific input. Context allows your LLM to generate customized outputs that are outside the scope of the data it was trained on.

In RAG applications, contextual information is typically stored in your selected vector database, which is represented by retrieval_context in an LLMTestCase and is not to be confused with context. Conversely, for a fine-tuning use case, this data is usually found in training datasets used to fine-tune your model. Providing the appropriate contextual information when constructing your evaluation dataset is one of the most challenging part of evaluating LLMs, since data in your knowledge base can constantly be changing.

Unlike other parameters, a context accepts a list of strings.

# A hypothetical LLM application example
import chatbot

input = "Why did the chicken cross the road?"

test_case = LLMTestCase(
input=input,
actual_output=chatbot.run(input),
expected_output="To get to the other side!",
context=["The chicken wanted to cross the road."]
)
note

Often times people confuse expected_output with context since due to their similar level of factual accuracy. However, while both are (or should be) factually correct, expected_output also takes aspects like tone and linguistic patterns into account, whereas context is strictly factual.

Retrieval Context

The retrieval_context is an optional parameter that represents your RAG pipeline's retrieval results at runtime. By providing retrieval_context, you can determine how well your retriever is performing using context as a benchmark.

# A hypothetical LLM application example
import chatbot

input = "Why did the chicken cross the road?"

test_case = LLMTestCase(
input=input,
actual_output=chatbot.run(input),
expected_output="To get to the other side!",
context=["The chicken wanted to cross the road."],
retrieval_context=["The chicken liked the other side of the road better"]
)
note

Remember, context is the ideal retrieval results for a given input and typically come from your evaluation dataset, whereas retrieval_context is your LLM application's actual retrieval results. So, while they might look similar at times, they are not the same.

Assert A Test Case

Before we begin going through the final sections, we highly recommend you to login to Confident AI (the platform powering deepeval) via the CLI. This way, you can keep track of all evaluation results generated each time you execute deepeval test run.

deepeval login

Similar to Pytest, deepeval allows you to assert any test case you create by calling the assert_test function by running deepeval test run via the CLI.

A test case passes only if all metrics passess. Depending on the metric, a combination of input, actual_output, expected_output, context, and retrieval_context is used to ascertain whether their criterion have been met.

test_assert_example.py
# A hypothetical LLM application example
import chatbot
from deepeval import assert_test
from deepeval.metrics import HallucinationMetric
from deepeval.test_case import LLMTestCase

def test_assert_example():
input = "Why did the chicken cross the road?"
test_case = LLMTestCase(
input=input,
actual_output=chatbot.run(input),
context=["The chicken wanted to cross the road."],
)
metric = HallucinationMetric(threshold=0.7)
assert_test(test_case, metrics=[metric])

There are two mandatory and one optional parameter when calling the assert_test() function:

  • test_case: an LLMTestCase
  • metrics: a list of metrics of type BaseMetric
  • [Optional] run_async: a boolean which when set to True, enables concurrent evaluation of all metrics. Defaulted to True.
info

The run_async parameter overrides the async_mode property of all metrics being evaluated. The async_mode property, as you'll learn later in the metrics section, determines whether each metric can execute asynchronously.

To execute the test cases, run deepeval test run via the CLI, which uses deepeval's Pytest integration under the hood to execute these tests. You can also include an optional -n flag follow by a number (that determines the number of processes that will be used) to run tests in parallel.

deepeval test run test_assert_example.py -n 4

Evaluate Test Cases in Bulk

Lastly, deepeval offers an evaluate function to evaluate multiple test cases at once, which similar to assert_test but without the need for Pytest or the CLI.

# A hypothetical LLM application example
import chatbot
from deepeval import evaluate
from deepeval.metrics import HallucinationMetric
from deepeval.test_case import LLMTestCase

test_case = LLMTestCase(
input=input,
actual_output=chatbot.run(input),
context=["The chicken wanted to cross the road."],
)

metric = HallucinationMetric(threshold=0.7)
evaluate([test_case], [metric])

There are two mandatory and four optional arguments when calling the evaluate() function:

  • test_case: an LLMTestCase
  • metrics: a list of metrics of type BaseMetric
  • [Optional] run_async: a boolean which when set to True, enables concurrent evaluation of all metrics. Defaulted to True.
  • [Optional] ignore_errors: a boolean which when set to True, ignores all exceptions raised during metrics execution for eac test case. Defaulted to False.
  • [Optional] write_cache: a boolean which when set to True, uses writes test run results to DISK. Defaulted to True.
  • [Optional] use_cache: a boolean which when set to True, uses cached test run results instead. Defaulted to False.
  • [Optional] show_indicator: a boolean which when set to True, shows the progress indicator for each individual metric. Defaulted to True.
  • [Optional] print_results: a boolean which when set to True, prints the result of each evaluation. Defaulted to True.

Similar to assert_test, evaluate allows you to log and view test results on Confident AI. For more examples of evaluate, visit the datasets section.